

Isolation and detection of fungal infections in both humans and cats with ringworm of the body, as well as antifungal sensitivity to treatments

Maymounah A. Al-Gburi¹

¹AL-Zahraa University for Women, College of Health and Medical Technology, Karbala, Iraq.

* maimona.a.khalifa@alzahraa.edu.iq

Received: 09 September (2025), Accepted: 30 September 2025. Published: 30 Sept. 2025

Abstract

Dermatophytosis is a dangerous infectious skin disorder that is impacting cats globally and is usually caused by *Microsporum canis*. The illness often manifests as asymptomatic in adult cats. Adults or kittens with impaired immune systems comprise the majority of cases with severe clinical signs. The illness may be prevalent in shelters or catteries, and inadequate hygiene is a risk factor. People who are easily impacted by skin conditions may develop similar conditions. Infectious arthrospores generated by dermatophytes have an environmental lifetime of around a year. They can be transferred by dust, clothes, brushes, and other external things, as well as by contact with healthy or ill cats. Utilizing commercially manufactured paper disks, antifungal medications (Ketoconazole KT, Bacitracin B, Miconazole MIC, Clotrimazole CC, Nystatin NS, and Amphotericin-B AP) were tested on blood agar. The results indicated that the best inhibition zone was found in Bacitracin B and Ketoconazole, while Amphotericin-B did not show any reaction.

Keywords: zoonotic, Ringworm, Drugs. MIC, human health, animal health.

Introduction

Dermatophytosis (ringworm) is a common superficial skin infection caused by a fungal infection of the hair, nails, and skin [1]. Cutaneous fungal infections have been observed globally and are predicted to impact 20-25% of the global population [2,3]. Fungal infections are classified into three genera: *Trichophyton*, *Microsporum*, and *Epidermophyton* [4]. Dermatophytosis is a skin infection caused by a dermatophytic fungus in keratinized tissues[5]. Dermatophytosis in Human can be characterized depending on the location infection in *Tinea corporis*: (non-hairy skin on the body) *Tinea cruris* (groin), *Tinea barbae* (beards on the areas of the face and neck), *Tinea capitis*, also known as *capitis* (scalp), *Tinea unguis* (nail infection), *Tinea pedis* (athlete's feet) and [6,7] Humans become infected with fungal disease through infected animals, especially cats and dogs[8]. In the wild, infectious ringworms may live for over a year. They can be transmitted by touching sick or normal carriers, and also through dust particles, tools, clothing, and other fomites[9]. Dermatophytosis is a prevalent fungal skin illness in tropical and subtropical nations such as Iraq due to their hot and humid climate. Bacteria may subsequently infect areas that were first affected by dermatophytes. Usually, symptoms start to show up at the site of infection (four to fourteen days) after exposure [10]. The lesion's gross appearance comprises an outside ring of active, progressive infection, with clear area inside the ring and flat patch of itchy skin, color rang from white to redness scaling Ring worm in infected cats was a circular red alopecia, desquamation and in Human Causes itching most dermatophytic infections are diagnosed clinically, but because topical steroid ointments and creams are frequently used to treat skin infections, they are frequently misdiagnosed and mistreated[11]. In rare cases, dermatophytes can also infiltrate the skin tissue and even deep organs, especially in immunocompromised individuals with acquired or congenital immunodeficiency[12]. If proper treatment is not received, these infections can worsen and become life-threatening[13]. Furthermore, the majority of nations either lack sufficient knowledge or have not identified the fungal species that are causing skin infections in their populations. Therefore, the aim of the study was to recognize and isolate ringworm fungi related to superficial fungal infection and medical choose for treatment for both animal and human.

Material and Methods

Sample Collection

The samples from humans and their pets' cats were collected in 30 total. Using swabs soaked in 70% ethanol to decrease contamination in the affected region. A sterile scalpel was used to remove the lesions, which were then gathered on sterile Petri plates and disposed of before being sent to a lab for mycological examination. The specimens, the patient's name is written on it, gender, age, date of collection, and location of site infection, were collected and sealed in sterile dry Petri plates. A portion of the materials was kept aside for microscopic investigation, and another for culture.

Using Wood's Lamp

A typical Wood lamp is a low-output mercury arc protected by a Wood filtering (barium silicate and 9% nickel oxide) that emits wavelengths 320-450 nm (peak 365 nm). (Figure 1). Examination is a diagnostic procedure in which the skin or hair is examined while exposed to the black light produced by the Wood lamp. Because it resides in the UV spectrum, blacklight has a wavelength that is somewhat shorter than violet [14].

Direct Microscopically Examination

According [15] to Part of each skin scrape was put on a sterile glass slide from site of infection in human and cats. The process involved use of (10%) Potassium Hydroxide (KOH) to digestion the keratin substance, using KOH direct microscopic examination is an inexpensive and quick technique to do on hairs and scales. Although it is a quick procedure, its sensitivity is low (56%) and it can produce false-positive findings, particularly if the sample contains saprophytic fungus spores After that, a fresh glass was placed over the solution, and it was heated slowly for one minute. Under 10X and 40X magnifications, The slide was inspected for hyphae and fungus spores under a microscope).

Isolation and identification of Dermatophytes

Culture on Sabouraud dextrose agar

For up to six weeks, colonies were isolated and cultivated on (SDA) Sabouraud dextrose agar supplemented with blood agar and chloramphenicol (0.05 mg/ml) and cyclohexamide (0.5 mg/ml) at 27°C. The growth rate, obverse, and reverse pigmentation of recovered colonies were

noted [16]. Ring worm were identified using both macroscopically (color, pigmentation, topography, and texture) and microscopic aspects of the colonies [17]. It is the most reliable technique for identifying dermatophytes, and it can identify the species).

Testing for Antifungal Susceptibility (AFST) using Disk Diffusion Methods Blood agar culture

Antifungal Susceptibility Testing (AFST) by using Disk Diffusion Methods Culture on blood agar. In this study use blood Agar (figure 3-A) is a general purpose enriched medium often used to grow fastidious organisms [18].

Results

Immunocompetent cats with isolated lesions may not need treatment since they recover on their own in one to three months. On the other hand, treating such instances will accelerate the course of the illness, lower the risk to humans and other animals, and lessen pollution in the environment. In cats, topical therapy can be less effective than in humans because of the limited drug penetration through the hair coat, the fact that many cats do not tolerate this treatment, and the potential for invisible little lesions (Figure 2). As a result, treatment plans have to include both topical and systemic medicine that is administered for a minimum of 10 weeks. In general, cats should be treated until the dermatophyte cannot be cultivated from their hairs following at least two consecutive brushings one to three weeks apart, in addition to until the lesions have completely disappeared. Dermatophyte infection in catteries and shelters is extremely difficult, time-consuming, and costly to eliminate. Good compliance by the owner is consequently required. A treatment strategy is required, as well as total isolation of sick and uninfected animals and extensive environmental cleansing. This will force the halting of breeding projects and performances. All animals in the cattery must be treated. A considerably less favourable option is to separate the cats into groups and treat based on infection status. When handling affected animals, special hygiene precautions should be followed to avoid human infection.

Treatment

Topical therapy

Cats with few lesions should have their hair trimmed away from the edges of the lesions, leaving a large margin. To prevent the infection from spreading because of microtrauma,

clipping should be done gently. It is advised to shampoo, dip, or rinse the entire body instead of treating lesions on the spot, as this approach may not be as effective. Clipping the entire cat helps facilitate the application of topical medication and improve drug penetration in individuals with generalized disease, longhaired cats, and for cattery cleansing.

Discussion

According to [19] the agar diffusion test The standard procedure for susceptibility testing for the fungal isolate to be tested is to draw it uniformly across the culture plate, and paper discs impregnated with the different antifungals to be tested are placed on the surface of the gelatin agar. Agar-disk diffusion methods use for Quantification of zone of inhibition on agar after incubation for 48h at 37°C which consider low cost and ease of interpretation [20,21]. commercially prepared paper disks contain on antifungal drugs according to [22] (Ketoconazole KT, Bacitracin B, Miconazole MIC, Clotrimazole CC, Nystatin NS and Amphotericin-B AP) . During agar plate incubation, The antifungal spreads over the surrounding agar from the disks. The size of the inhibition zone around the disk is established by a medication that effectively inhibits fungal growth (figure 3-B). Itraconazole is licensed for the treatment of feline dermatophytosis and is now the medicine of choice, despite its relatively high cost) [23]. Anorexia is the only adverse response that is occasionally observed. Itraconazole also appears to have less teratogenicity and embryotoxicity than ketoconazole. However, it is not advised to take it when pregnant. Kittens as young as six weeks old may be used. has been frequently used for the treatment of systemic and cutaneous fungal infections because of its broad scope and safety profile in both human and veterinary medicine [24]. In addition to being efficient, this strategy lowers treatment costs. It has been recommended to administer a pulse of 5 mg/kg/day for one week, every two weeks for six weeks [25] Topical therapy strategy restricts the spores' ability to infect humans, other animals, and the environment. All contaminated hairs should be wrapped and disinfected before being disposed of, and the complete coat of hair, including the whiskers, should be carefully cut [9] Instrument sterilization by heat or chemical means is necessary. In order to prevent environmental contamination, veterinarian facilities shouldn't trim cats' hair. The cat's own home, where the air is already polluted, is the ideal location for clipping. The efficiency of topical antifungal medications varies greatly. One of the best treatments is using an

antifungal cream such as Ketoconazole (kt) or Bacitracin B after the (human- figure 5) has had a total body treatment with Povidone-iodine solution twice a day until the cat is dry.

Conclusion

When exposed to infected cats, it is preferable to isolate the animal to prevent transmission of the infection to humans.

Fig. 1. Wood's Lamp

Fig. 2. Some dermatophytosis infection may become visible only after clipping

Fig. 3. fungal culture on blood agar: Disk Diffusion Methods Culture on blood agar.

Fig. 4. Ring worm in Human (A, B, C, D and E), in Cats (F) before treatment

Fig. 5. Human treated by topical Ketoconazole

Acknowledgment

I would like to express my sincere gratitude to [Dr. Luma Majeed Ahmed] for their valuable guidance and support throughout this research. Special thanks are also extended to [Altaqadum Aleilmi] for providing the necessary facilities and resources. Finally, I am grateful to my colleagues and family for their encouragement during the completion of this work.

References

- [1] Alshawa K, Beretti J-L, Lacroix C, Feuilhade M, Dauphin B, Quesne G, Hassouni N, Nassif X, Bougnoux M-E.(2012). Successful identification of clinical dermatophyte and *Neoscytalidium* species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. *J. Clin. Microbiol.*, **50**, 2277–81 <https://doi.org/10.1128/jcm.06634-11>.
- [2] Deng, R., Wang, X., & Li, R. (2023). Dermatophyte infection: from fungal pathogenicity to host immune responses. *Frontiers in Immunology*, **14**, 1285887, <https://doi.org/10.3389/fimmu.2023.1285887>.
- [3] Havlickova, B., Czaika, V. A., & Friedrich, M. (2008). Epidemiological trends in skin mycoses worldwide. *Mycoses*, **51**, 2-15. <https://doi.org/10.1111/j.1439-0507.2008.01606.x>.
- [4] Shalaby, M. F. M., El-Din, A. N., & El-Hamid, M. A. (2016). Isolation, identification, and in vitro antifungal susceptibility testing of dermatophytes from clinical samples at Sohag University Hospital in Egypt. *Electronic physician*, **8**(6), 2557. doi:10.19082/2557.
- [5] Grumbt, M., Monod, M., Yamada, T., Hertweck, C., Kunert, J., & Staib, P. (2013). Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump. *Journal of Investigative Dermatology*, **133**(6), 1550-1555. <https://doi.org/10.1038/jid.2013.41>.
- [6] Achterman, R. R., & White, T. C. (2012). Dermatophyte virulence factors: identifying and analyzing genes that may contribute to chronic or acute skin infections. *International journal of microbiology*, **2012**(1), 358305. <https://doi.org/10.1155/2012/358305>.
- [7] Faway, É., Lambert de Rouvroit, C., & Poumay, Y. (2018). In vitro models of dermatophyte infection to investigate epidermal barrier alterations. *Experimental dermatology*, **27**(8), 915-922. <https://doi.org/10.1111/exd.13726>.
- [8] Seyedmojtaba Seyedmousavi, Sandra de M G Bosco, Sybren de Hoog, Frank Ebel, Daniel Elad, Renata R Gomes, Ilse D Jacobsen, Henrik E Jensen, An Martel, Bernard Mignon, Frank Pasmans, Elena Piecková, Anderson Messias Rodrigues, Karuna Singh, Vania A Vicente, Gudrun Wibbelt, Nathan P Wiederhold, Jacques Guillot, Fungal infections in animals.(2018): a

patchwork of different situations, Medical Mycology, Volume 56, Issue suppl_1, April, Pages S165–S187, <https://doi.org/10.1093/mmy/myx104>

[9] Frymus T, Gruffydd-Jones T, Pennisi MG, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Möstl K, Radford AD, Thiry E, Truyen U, Horzinek MC. Dermatophytosis in cats.(2013): ABCD guidelines on prevention and management. *J Feline Med Surg.* Jul;15(7):598-604. doi: 10.1177/1098612X13489222.

[10] Yadav, A., Urhekar, A. D., Mane, V., Danu, M. S., Goel, N., & Ajit, K. G. (2013). Optimization and isolation of dermatophytes from clinical samples and in vitro antifungal susceptibility testing by disc diffusion method. *Journal of Microbiology and Biotechnology*, 2(3), 19-34.

[11] Burzykowski, T., Molenberghs, G., Abeck, D., Haneke, E., Hay, R., Katsambas, A. & Marynissen, G. (2003). High prevalence of foot diseases in Europe: results of the Achilles Project. *Mycoses*, 46(11-12), 496-505. <https://doi.org/10.1046/j.0933-7407.2003.00933.x>.

[12] Smith, K. J., Welsh, M., & Skelton, H. (2001). *Trichophyton rubrum* showing deep dermal invasion directly from the epidermis in immunosuppressed patients. *British Journal of Dermatology*, 145(2), 344-348. DOI:10.1046/j.1365-2133.2001.04331.x.

[13] Wang, R., Huang, C., Zhang, Y., & Li, R. (2021). Invasive dermatophyte infection: a systematic review. *Mycoses*, 64(4), 340-348. <https://doi.org/10.1111/myc.13212>.

[14] Habif, T. P. (1990). Light-related disease and disorders of pigmentation. *Clinical Dermatology. A color guide to diagnosis and therapy*, 472-497.

[15] Ponka D, Baddar F. (2014) Microscopic potassium hydroxide preparation. *Can Fam Physician*. Jan;60(1):57. PMID: 24452564; PMCID: PMC3994805.

[16] Diso, S. U., Adam, J. S., Mu'azu, L., Abdallah, M. S., & Ali, M. (2020). Isolation and Characterization of Some Fungi Associated with Superficial Fungal Infections. *ARC Journal of Dermatology*, 5(1), 12-16. DOI:10.20431/2456-0022.0501003.

[17] Hungerford, L. L., Campbell, C. L., & Smith, A. R. (1998). Veterinary mycology laboratory manual (pp. xi+-75).

[18] Buxton, R. (2005). Blood agar plates and hemolysis protocols. American Society for Microbiology, 15, 1-9.

[19] Espinel-Ingroff A, Arthington-Skaggs B, Iqbal N, Ellis D, Pfaller MA, Messer S, Rinaldi M, Fothergill A, Gibbs DL, Wang A. (2007). Multicenter Evaluation of a New Disk Agar Diffusion Method for Susceptibility Testing of Filamentous Fungi with Voriconazole, Posaconazole, Itraconazole, Amphotericin B, and Caspofungin. *J Clin Microbiol* 45: <https://doi.org/10.1128/jcm.00134-07>

[20] Berkow, E. L., Lockhart, S. R., & Ostrosky-Zeichner, L. (2020). Antifungal susceptibility testing: current approaches. *Clinical Microbiology Reviews*, 33(3), 10-1128. <https://doi.org/10.1128/cmr.00069-19>.

[21] Salina, E. G., Ekins, S., & Makarov, V. A. (2019). A rapid method for estimation of the efficacy of potential antimicrobials in humans and animals by agar diffusion assay. *Chemical biology & drug design*, 93(6), 1021-1025.

[22] Jartarkar SR, Patil A, Goldust Y, Cockerell CJ, Schwartz RA, Grabbe S, Goldust M. (2021). Pathogenesis, Immunology and Management of Dermatophytosis. *J Fungi (Basel)*. doi: 10.3390/jof8010039. PMID: 35049979; PMCID: PMC8781719. <https://doi.org/10.3390/jof8010039>.

[23] Moriello KA, Coyner K. (2021). Dermatophytosis. *Greene's Infectious Diseases of the Dog and Cat*. Elsevier, pp.961–77 .

[24] Sousa, Y. V., Santiago, M. G., de Souza, B. M., Keller, K. M., Oliveira, C. S., Mendoza, L., V, Raquel, & Goulart, G. A. (2024). Itraconazole in human medicine and veterinary practice. *Journal of Medical Mycology*, 34(2), 101473. <https://doi.org/10.1016/j.mycmed.2024.101473>.

[25] Colombo, S., Cornegliani, L., & Vercelli, A. (2001). Efficacy of itraconazole as a combined continuous/pulse therapy in feline dermatophytosis: preliminary results in nine cases. *Veterinary Dermatology*, 12(6), 347-350. <https://doi.org/10.1046/j.0959-4493.2001.00274.x>.